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Invariance quantum groups of the deformed oscillator
algebra

Jacqueline Bertrand and Michèle Irac-Astaud
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F-75251 Paris Cedex 05, France

Received 22 July 1996

Abstract. A differential calculus is set up on a deformation of the oscillator algebra. It
is uniquely determined by the requirement of invariance under a seven-dimensional quantum
group. The quantum space and its associated differential calculus are also shown to be invariant
under a nine generator quantum group containing the previous one.

1. Introduction

Several kinds of differential calculi have been introduced concerning quantum groups and
quantum spaces and have been widely studied [1–3]. However, there is one important case
that deserves special treatment because of its importance in physics, namely the case of the
oscillator (or Weyl–Heisenberg) algebra. Indeed, in its usual form it represents the algebra
of observables in quantum mechanics. After deformation, it is still an algebra of observables
but for a different quantization.

The problem of constructing a differential calculus on such an algebra can be tackled
in different ways. Here we favour the invariance approach. Given the quantum space of
variables (or observables), we first construct the set of seven-element quantum matrices
preserving that space (section 2). The space of differentials is then determined in two
independent ways: either by postulating the existence of aR-matrix (section 3) or by
constructing directly a new invariant space (section 4). The uniqueness of the result
emphasizes the power of the approach based on covariance. Finally, in section 5, the
quantum group preserving simultaneously the spaces of variables and differentials is
explicitly described. Moreover, a larger quantum group with nine generators is also shown
to preserve the same spaces. Both groups can be endowed with a structure of Hopf algebra.

2. The quantum space and its invariance algebra

The Weyl–Heisenberg algebra written in homogeneous form is the free associative algebra
generated by three operatorsxi satisfying the following quadratic relations:

(R)


x1x2− x2x1− s(x3)2 = 0

x1x3 = x3x1

x2x3 = x3x2.

(1)
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This algebra will be denoted byC〈x〉/R. It is invariant under the seven-parameter
Lie subgroupG of GL(3) consisting of matricesT such thatT 3

1 = T 3
2 = 0 and

T 1
1 T

2
2 − T 1

2 T
2

1 = (T 3
3 )

2.
Deforming this algebra, we consider the quantum space obtained when relations (1) are

replaced by

(Rxx)


x1x2− qx2x1− s(x3)2 = 0

x1x3− ux3x1 = 0

x2x3− u−1x3x2 = 0.

(2)

This is the most general deformation of relations (1) which preserves their quadratic
character and does not introduce any new term. The resulting quantum space contains
in particular theq-oscillator which corresponds to the choiceq = u−2, s = 1 whenx1 = a,
x2 = a† andx3 = q−N/2.

Let V be the vector space of column vectorsX with elementsxi . The matrixT now has
non-commuting elements and can be made to act onX according to the usual techniques
developed in [5] and [6]:

δ:X −→ δ(X) = T ⊗X. (3)

RelationsRxx defined by (2) will be preserved by this action provided the following
commutation relations hold

T 1
1 T

3
3 = T 3

3 T
1

1 T 2
1 T

3
3 = u−2T 3

3 T
2

1

T 1
2 T

3
3 = u2T 3

3 T
1

2 T 2
2 T

3
3 = T 3

3 T
2

2

T 1
3 T

3
3 = uT 3

3 T
1

3 T 2
3 T

3
3 = u−1T 3

3 T
2

3

T 1
1 T

2
1 = qT 2

1 T
1

1 T 1
2 T

2
2 = qT 2

2 T
1

2 (4)

uT 1
1 T

2
3 − qT 2

3 T
1

1 = quT 2
1 T

1
3 − T 1

3 T
2

1 (5)

T 1
2 T

2
3 − quT 2

3 T
1

2 = qT 2
2 T

1
3 − uT 1

3 T
2

2 (6)

T 1
1 T

2
2 − T 2

2 T
1

1 = qT 2
1 T

1
2 − q−1T 1

2 T
2

1 (7)

(T 1
1 T

2
2 − qT 2

1 T
1

2 )s = s(T 3
3 )

2− T 1
3 T

2
3 + qT 2

3 T
1

3 . (8)

In that case, the actionδ becomes defined as a mapping ofC〈x〉/Rxx onto itself.

3. R-matrix and invariant differential calculus

In the present case, a differential calculus onC〈x〉/Rxx that is invariant under the action of
T can be constructed if there exists a matrixR̂ with the following properties [5]:

— R̂ is defined by the relations

R̂
ji

kl T
k
mT

l
n = T jl T ik R̂lkmn. (9)

— R̂ has two eigenspaces,V1 andV2 that can be identified with the variables and the
one-forms quantum spaces, respectively. SpaceV1 has dimension six and is determined by
the relations (Rxx) given in (2).

The determination of̂R is performed by assuming that relations (4)–(8) can be cast into
the form (9) and solving the corresponding equations. In addition, we impose two natural
requirements.

(i) The determinant ofT is different from zero so that the set of matricesT can be
made into a Hopf algebra.
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(ii) The ordering of monomials such asT ij T
k
l T

m
n is independent of the procedure used,

when the associativity of the algebraC〈T 〉 is taken into account.
With these conditions, it is found that âR-matrix exists only ifq = u2 and it is given by:

R̂ =



1 0 0 0 0 0 0 0 0
0 0 0 u2 0 0 0 0 s

0 0 0 0 0 0 u 0 0
0 u−2 0 0 0 0 0 0 −s/u2

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1/u 0
0 0 1/u 0 0 0 0 0 0
0 0 0 0 0 u 0 0 0
0 0 0 0 0 0 0 0 1


. (10)

It can be shown that this matrix̂R is equal to its inverse and verifies the Yang–Baxter
equation

(R̂ ⊗ 1)(1⊗ R̂)(R̂ ⊗ 1) = (1⊗ R̂)(R̂ ⊗ 1)(1⊗ R̂) (11)

where 1 is the unit matrix ofGL(3). The matrixR̂ has two eigenspaces that correspond
to the variables quantum space defined by the relationsRxx and to the one-forms quantum
space defined by

Rξξ :


(ξ1)2 = 0 (ξ2)2 = 0

(ξ3)2 = 0 ξ2ξ1 = −u−2ξ1ξ2

ξ1ξ3 = −uξ3ξ1 ξ2ξ3 = −u−1ξ3ξ2.

(12)

Result 1.If the existence of âR-matrix is assumed and if conditions (i) and (ii) are satisfied,
then an invariant differential calculus can be set up onC〈x〉/Rxx if and only if q = u2.

In the next section, the same result is obtained without assuming the existence of an
R̂-matrix.

4. Invariant exterior algebra

Consider a vector4 ∈ V with componentsξ i , i = 1, 2, 3 and formV ⊗ V . The space
of invariant forms can be constructed directly as an invariant subspaceV2 of V ⊗ V that
is supposed to be of dimension three or less. This will be done by finding the possible
invariant relations between theξ iξ j .

An important tool for this derivation is the introduction of a degreed◦ on C〈T 〉, i.e.
of a homomorphism fromC〈T 〉 into Z. Explicitly, the degree operationd◦ associates with
each elementT ij the power ofu present in the commutation relations (4) of that element
with T 3

3 . Assuming thatu 6= 1, we find the degrees of all the elements ofT

d◦(T 1
1 ) = d◦(T 2

2 ) = d◦(T 3
3 ) = 0

d◦(T 1
2 ) = 2

d◦(T 2
1 ) = −2 (13)

d◦(T 1
3 ) = 1

d◦(T 2
3 ) = −1.

The degrees of all the monomials inC〈T 〉 can then be deduced.
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Consider a quadratic relationR1 = 0 between theξ . After action of the homomorphism
δ⊗δ defined in (3), a new relation(T ⊗T )⊗R1 = 0 is obtained which contains monomials
T ij T

k
l of known degrees. The invariance of relationR1 = 0 then implies that terms of

different degrees vanish separately. Applying this remark systematically allows all possible
invariant relations to be found as will now be sketched.

Let ξ ′iξ ′j denote the components of the vector4′ ⊗ 4′ ≡ (T ⊗ T ) ⊗ (4 ⊗ 4). The
monomial (ξ ′1)2 is the only one containing a term of degree four. Hence it cannot be
involved in any quadratic relation except(ξ1)2 = 0. The same reasoning with(ξ ′2)2 and
degree(−4) leads to(ξ2)2 = 0. In the remaining transformed relations, terms of degree
(+2) (respectively(−2)) come from monomialsξ ′1ξ ′3 and ξ ′3ξ ′1 (respectivelyξ ′2ξ ′3 and
ξ ′3ξ ′2). This implies thatξ1ξ3 and ξ2ξ3 are independent monomials. To generateV2,
we need only a third independent monomial which can be chosen asξ1ξ2, ξ2ξ1 or (ξ3)2.
Choosingξ1ξ2, we can write the general form of the invariant relations as

(ξ1)2 = 0

(ξ2)2 = 0

(ξ3)2 = kξ1ξ2

ξ2ξ1 = ξξ1ξ2 (14)

ξ3ξ1 = λξ1ξ3+ λ12ξ
1ξ2

ξ3ξ2 = µξ2ξ3+ µ12ξ
1ξ2.

The conditions of invariance of these commutation relations yield new constraints on the
elements of matrixT which are consistent provided thatk = λ12 = µ12 = 0.

If instead we choose(ξ3)2 as the third independent monomial, we obtain a different
situation only if ξ1ξ2 = 0. In that caseξ ′1ξ ′2 contains only one term of degree 0, namely
T 1

3 T
2

3 (ξ
3)2 that cannot vanish. Hence this case is impossible.

We prove in the same way that the dimension ofV2 cannot be equal to two.
Thus, assuming that the differentials are related by six (or more) relations, we have

shown that the only possible set is given by (14) withk = λ12 = µ12 = 0. The constraint
of invariance of the resulting relations has been explicitly studied in [7]. The consistency
requirement for the ordering of terms containing a product of threeT ij has led to the
conditionq = u2 and to the following values of the parameters:

λ = −u−1 µ = −u ξ = −u−2. (15)

Result 2.If the space of invariant formsξ is supposed to be of dimension three at most, the
only possibility to construct an invariant differential calculus on the quantum space defined
by (2) is to haveq = u2; the defining relations are then given by (12).

In conclusion, the conditionq = u2 is necessary to be able to set up aG-invariant
differential calculus on the quantum space defined by (2). In particular, the so-called
q-oscillator which corresponds toq = u−2 is excluded.

5. Quantum groups

5.1. A quantum group with seven generators

A unique set of relations (Rxx, Rξ,ξ ) has been obtained. They are given by (2, 12) with
q = u2 and define thex and ξ spaces respectively. The constraints of invariance by
homomorphismδ and the consistency of the computations lead to the following relations
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RTT between the elementsT ij :

T 1
1 T

1
2 = u−2T 1

2 T
1

1 T 1
1 T

1
3 = u−1T 1

3 T
1

1 T 1
1 T

2
2 = T 2

2 T
1

1 T 1
1 T

2
1 = u2T 2

1 T
1

1

T 1
1 T

2
3 = uT 2

3 T
1

1 T 1
1 T

3
3 = T 3

3 T
1

1 T 1
2 T

1
3 = uT 1

3 T
1

2 T 1
2 T

2
2 = u2T 2

2 T
1

2

T 1
2 T

2
1 = u4T 2

1 T
1

2 T 1
2 T

2
3 = u3T 2

3 T
1

2 T 1
2 T

3
3 = u2T 3

3 T
1

2 T 1
3 T

2
2 = uT 2

2 T
1

3

T 1
3 T

2
1 = u3T 2

1 T
1

3 T 1
3 T

3
3 = uT 3

3 T
1

3 T 2
2 T

2
1 = u2T 2

1 T
2

2 T 2
2 T

2
3 = uT 2

3 T
2

2

T 2
2 T

3
3 = T 3

3 T
2

2 T 2
1 T

2
3 = u−1T 2

3 T
2

1 T 2
1 T

3
3 = u−2T 3

3 T
2

1 T 2
3 T

3
3 = u−1T 3

3 T
2

3

T 1
3 T

2
3 − u2T 2

3 T
1

3 + s(T 1
1 T

2
2 − u2T 2

1 T
1

2 − (T 3
3 )

2) = 0. (16)

The inverse matrix can now be completely determined and is given by

T −1 =
 T 2

2 T
3

3 −u2T 1
2 T

3
3 T 1

2 T
2

3 − uT 1
3 T

2
2

−u−2T 2
1 T

3
3 T 1

1 T
3

3 −u−2T 1
1 T

2
3 + u−3T 1

3 T
2

1

0 0 T 1
1 T

2
2 − u−2T 1

2 T
2

1

×D−1 (17)

where the determinantD can be written as

D ≡ (T 1
1 T

2
2 − u−2T 1

2 T
2

1 )T
3

3 . (18)

Remark that the determinant is not central and its inverseD−1 must be added to the set of
generators of the algebra. Its commutation relationsRTD−1 are easily deduced from those
of D and read:

D−1T 1
1 = T 1

1D
−1 u−6D−1T 1

2 = T 1
2D
−1 u−3D−1T 1

3 = T 1
3D
−1

D−1T 2
1 = u−6T 2

1D
−1 D−1T 2

2 = T 2
2D
−1 D−1T 2

3 = u−3T 2
3D
−1

D−1T 3
3 = T 3

3D
−1. (19)

With these definitions, it may be verified thatH8 ≡ C〈T ,D−1〉/RT T ∪ RTD−1 is a Hopf
algebra with co-product1, co-unit ε and antipodeS defined by

1(T ) ≡ T ⊗ T 1(D−1) ≡ D−1⊗D−1 (20)

ε(T ,D−1) ≡ (I, 1) S(T ) ≡ T −1 S(D) ≡ D−1. (21)

Now we can apply the usual method [3, 4] to obtain the quadratic relations between the
variables, the differentials and the derivatives [7]. They are given by

xkξ l = R̂klmnξmxn (22)

∂kξ
l = R̂−1lm

kn ξn∂m (23)

∂lx
k = δkl + R̂kmln xn∂m. (24)

5.2. A quantum group with nine generators

Once the matrix̂R has been explicitly computed, it is possible to introduce a new quantum
matrix t with nine elements satisfying the relationsRtt deduced from (9)

R̂
ji

kl t
k
mt
l
n = t jl t ikR̂lkmn. (25)

The computation of the inverset−1 yields t22 t
3
3 − ut23 t32 −u2t12 t

3
3 + u3t13 t

3
2 t12 t

2
3 − ut13 t22

−u−2t21 t
3
3 + u−3t23 t

3
1 t11 t

3
3 − u−1t13 t

3
1 −u−2t11 t

2
3 + u−3t13 t

2
1

t21 t
3
2 − u−2t22 t

3
1 −u2t11 t

3
2 + t12 t31 t11 t

2
2 − u−2t12 t

2
1

 d−1 (26)

with the determinantd of t equal to

d = t11 t22 t33 + t13 t21 t32 + u−3t12 t
2
3 t

3
1 − u−1t11 t

2
3 t

3
2 − u−2t12 t

2
1 t

3
3 − u−2t13 t

2
2 t

3
1 .
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It can be verified thatd is not a central element ofC〈t〉 and therefore must be added to this
algebra. The commutation relationsRtd−1 of d−1 with the generatorst ij are

t11d
−1 = d−1t11 t12d

−1 = u−6d−1t12 t13d
−1 = u−3d−1t13

t22d
−1 = d−1t22 t21d

−1 = u4d−1t21 t23d
−1 = u−3d−1t23

t31d
−1 = u3d−1t31 t32d

−1 = u−3d−1t32 t33d
−1 = d−1t33 . (27)

In this manner,H10 ≡ C〈t, d−1〉/Rtt ∪ Rtd−1 is endowed with a structure of Hopf algebra.
Thus two Hopf algebras,H8 andH10, have been constructed. Both preserve the same

differential calculus on the deformed oscillator algebra defined byRxx with q = u2. In
addition, the construction ensures thatH10 containsH8 = C〈T ,D−1〉/RT T ∪ RTD−1 as a
Hopf subalgebra.

6. Conclusion

We have been able to deform simultaneously the Weyl–Heisenberg algebra and its group
of invariance (a subgroup ofGL(3)). In addition, an invariant differential calculus has
been set up on the resulting quantum space. However, it must be stressed that the whole
construction cannot be carried out for arbitrary values of the deformation parameters and
that the final result depends only on one complex numberu.

The constraint on the values of the parameters can be removed when the requirement
of invariance by a seven-generator quantum group is lifted. A purely algebraic approach
[4] can be developed and the commutation relations are then shown to be invariant by a
quantum matrix belonging to a three-parameter deformation ofGL(3) [8, 9].

The construction performed in this paper has yielded two quantum groups and their
associated Hopf algebrasH10, H8, which have ten and eight generators, respectively. These
algebras are original deformations ofGL(3) and of its subgroupG. They are different from
GLq(3) and other quantum groups proposed in [5] since they correspond to the conservation
of different quadratic forms. Moreover, the smaller oneH8 is embedded inH10 as a true
Hopf subalgebra.
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