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Abstract. A differential calculus is set up on a deformation of the oscillator algebra. It

is uniquely determined by the requirement of invariance under a seven-dimensional quantum
group. The quantum space and its associated differential calculus are also shown to be invariant
under a nine generator quantum group containing the previous one.

1. Introduction

Several kinds of differential calculi have been introduced concerning quantum groups and
guantum spaces and have been widely studied [1-3]. However, there is one important case
that deserves special treatment because of its importance in physics, nhamely the case of the
oscillator (or Weyl-Heisenberg) algebra. Indeed, in its usual form it represents the algebra
of observables in quantum mechanics. After deformation, it is still an algebra of observables
but for a different quantization.

The problem of constructing a differential calculus on such an algebra can be tackled
in different ways. Here we favour the invariance approach. Given the quantum space of
variables (or observables), we first construct the set of seven-element quantum matrices
preserving that space (section 2). The space of differentials is then determined in two
independent ways: either by postulating the existence @&-matrix (section 3) or by
constructing directly a new invariant space (section 4). The uniqueness of the result
emphasizes the power of the approach based on covariance. Finally, in section 5, the
guantum group preserving simultaneously the spaces of variables and differentials is
explicitly described. Moreover, a larger quantum group with nine generators is also shown
to preserve the same spaces. Both groups can be endowed with a structure of Hopf algebra.

2. The quantum space and its invariance algebra

The Weyl-Heisenberg algebra written in homogeneous form is the free associative algebra
generated by three operatorssatisfying the following quadratic relations:

xix? —x2xr—s(x®?=0
(R) { x1x3 = x3?! (8]
x%x% = x3x2,
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This algebra will be denoted b¢(x)/R. It is invariant under the seven-parameter
Lie subgroupG of GL(3) consisting of matricesT such that7? = 7 = 0 and
TIT} — TITE = (T5)>%

Deforming this algebra, we consider the quantum space obtained when relations (1) are
replaced by

xtx? - qx2x1 —s(x%»?=0
(Rey) 3 xtx® —ux®xt=0 (2)
¥ —u 3?2 =0.

This is the most general deformation of relations (1) which preserves their quadratic
character and does not introduce any new term. The resulting quantum space contains
in particular theg-oscillator which corresponds to the choige= u =2, s = 1 whenx! = a,
x?2 =al andx® = ¢~ V/2,

Let V be the vector space of column vectdfsvith elementsc’. The matrixT now has
non-commuting elements and can be made to ack caccording to the usual techniques
developed in [5] and [6]:

55X —8X)=TQ®X. (3

Relations R,, defined by (2) will be preserved by this action provided the following
commutation relations hold

TS = 3T TETS = u *TSTY

TyTS = u?T3T) TZT3 = T3T}

TaTs = uTS Ty TZT8 = u ' TJT?

Uy T12 =4 T12 T Ty T22 =4 T22 Ty 4
uT{Ty — qTET! = quTiTy — T3TE ®)
Ty T3 — quTiTy = qT;Ts — uT3T; (6)
TLT; — TiT] = qTET) — q T3 TE @)
(TETF — qTET)s = s(T)? — T4TE + qTET;- (8)

In that case, the actiofibecomes defined as a mapping@fx)/R,, onto itself.

3. R-matrix and invariant differential calculus

In the present case, a differential calculus@fx)/ R, that is invariant under the action of
T can be constructed if there exists a matRwith the following properties [5]:
— R is defined by the relations
RIT,\T, = T/T{R},,. ©)

kl “m~n

— R has two eigenspace¥; and V, that can be identified with the variables and the
one-forms quantum spaces, respectively. Sg4clkas dimension six and is determined by
the relations R..) given in (2).

The determination oR is performed by assuming that relations (4)—(8) can be cast into
the form (9) and solving the corresponding equations. In addition, we impose two natural
requirements.

(i) The determinant off is different from zero so that the set of matricEscan be
made into a Hopf algebra.
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(i) The ordering of monomials such a$TI"Tn’” is independent of the procedure used,
when the associativity of the algeb€XT) is taken into account.
With these conditions, it is found thatR-matrix exists only ifg = u? and it is given by:

1 0 0O O 0 OO0 O 0
0O O 0O u> 000 O s
0O O 0O 0O O Ou O 0
R 0 u?2 0 0 00 0 0 —s/u?
R=]10 O 0O 0 1 0 0 O o . (10)
0O O O 0O O 0 O Zu 0
0O 0 Yu 0 O O O O 0
0O O 0O O Oux O O 0
0O O 0O O 0 O0O O0 O 1

It can be shown that this matrix is equal to its inverse and verifies the Yang—Baxter
equation

RODAQR(R®D =1 R(RRDA®R) (11)

where 1 is the unit matrix o6;L(3). The matrixR has two eigenspaces that correspond
to the variables quantum space defined by the relatihnsand to the one-forms quantum
space defined by

(51)2 — 0 (52)2 — 0
Rg: (637 =0 5261 = —u g’ (12)
5153 — _u%.:v’él SZSS — _u—lé3§2_
Result 1.If the existence of &-matrix is assumed and if conditions (i) and (i) are satisfied,
then an invariant differential calculus can be set updim)/R,, if and only if g = u?.

__In the next section, the same result is obtained without assuming the existence of an
R-matrix.

4. Invariant exterior algebra

Consider a vecto€ e V with components’, i = 1,2,3 and formV ® V. The space
of invariant forms can be constructed directly as an invariant subspgaoé V ® V that
is supposed to be of dimension three or less. This will be done by finding the possible
invariant relations between thgg/.

An important tool for this derivation is the introduction of a degtEeon C(T), i.e.
of a homomorphism fron€(T') into Z. Explicitly, the degree operatiod® associates with
each eIemenTji the power ofu present in the commutation relations (4) of that element

with 7. Assuming that: # 1, we find the degrees of all the elementsTof

d°(T}) = d°(Tf) = d°(T5) =0

d°(T)) =2

d°(T?) = -2 (13)
d°(T}) =1

d°(T§) = —1.

The degrees of all the monomials @7') can then be deduced.
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Consider a quadratic relatia®y, = 0 between thé&. After action of the homomorphism
3 ® 46 defined in (3), a new relatiol’ ® T) ® R, = 0 is obtained which contains monomials
T/ T} of known degrees. The invariance of relati® = O then implies that terms of
different degrees vanish separately. Applying this remark systematically allows all possible
invariant relations to be found as will now be sketched.

Let £7&7 denote the components of the vecBI® E' = (T ® T) ® (E® E). The
monomial ()2 is the only one containing a term of degree four. Hence it cannot be
involved in any quadratic relation exceg!)? = 0. The same reasoning wiit§’?)?> and
degree(—4) leads to(£%)2 = 0. In the remaining transformed relations, terms of degree
(+2) (respectively(—2)) come from monomialg'£’® and £°¢"? (respectivelyz’?£”® and
£%¢2). This implies that£!£3 and £2£3 are independent monomials. To generdte
we need only a third independent monomial which can be chosél&dss2&! or (£%)2.
Choosingg!£2, we can write the general form of the invariant relations as

EH?=0

E?=0

(%)% = kg'E?

g%t = ggle? (14)

£ = AETE% 4 M1t '8P

£%7 = nE%E° + ok €%
The conditions of invariance of these commutation relations yield new constraints on the
elements of matrix’ which are consistent provided that= 112 = 12 = 0.

If instead we choosg&®)? as the third independent monomial, we obtain a different
situation only if£1£2 = 0. In that case’ &> contains only one term of degree 0, namely
T3TZ(£%)? that cannot vanish. Hence this case is impossible.

We prove in the same way that the dimensionVefcannot be equal to two.

Thus, assuming that the differentials are related by six (or more) relations, we have
shown that the only possible set is given by (14) with= 11, = u12 = 0. The constraint
of invariance of the resulting relations has been explicitly studied in [7]. The consistency
requirement for the ordering of terms containing a product of tWFjémas led to the
conditiong = u? and to the following values of the parameters:

r=—-ut w=—u £=—u? (15)

Result 2.If the space of invariant forms is supposed to be of dimension three at most, the
only possibility to construct an invariant differential calculus on the quantum space defined
by (2) is to havey = u?; the defining relations are then given by (12).

In conclusion, the conditioy = u? is necessary to be able to set upGainvariant
differential calculus on the quantum space defined by (2). In particular, the so-called
g-oscillator which corresponds = 12 is excluded.

5. Quantum groups

5.1. A quantum group with seven generators

A unique set of relationsR;,, Rt ) has been obtained. They are given by (2,12) with
g = u? and define ther and £ spaces respectively. The constraints of invariance by
homomorphisms and the consistency of the computations lead to the following relations
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Ry between the elemem‘@":

TITY = u™2T; T} Ty = u™ i1} TIT? = T7T} TIT? = uT?T}
TAT2 = uT?T}! T3 = 131} TITE = uTiT} TIT? = u’T2TS
TyTE = u*TET; TiTE = uTZTy T3Tg = u?TiTy T3Tf = uTFTS
TIT? = udT2T3 TIT3 = uTiT] TZT? = u?T?T? TZTZ = uT2T?
TZT3 = TST7 TET? = u™'T2T? TETS = u™T3T? TZT3 = u ' T3T?
T3TZ — u?TETy + s(T{TF — u?TETY — (T3)?) = 0. (16)
The inverse matrix can now be completely determined and is given by
T8 —u’TiTS T3TZ — uTiT}

Tl = | —u?121f T —u?TITZ + u 3TiT? x D7t (17)

0 0 TIT? — u=2T}T?
where the determinar® can be written as

D = (TiTF — u T} THTS. (18)

Remark that the determinant is not central and its invérsé must be added to the set of
generators of the algebra. Its commutation relati®qg-: are easily deduced from those
of D and read:

pirtt=1lp™? u DT} = 1Dt u3D7T} = TiD7?
DT =u°TD™? DT =TfD7! D'TZ =u3T{D™?
D =1iDp™t. (19)
With these definitions, it may be verified thats = C(T, D™Y)/Ry7 U Ryp1 is a Hopf
algebra with co-produch\, co-unite and antipodeS defined by
AT)=TQT ADYHY=D1gD? (20)
e(T,DH=,1) S(ry=r1"1 S(D)= D1, (21)

Now we can apply the usual method [3, 4] to obtain the quadratic relations between the
variables, the differentials and the derivatives [7]. They are given by

g = Ry g (22)
akél = ﬁ];IHmEnaHI (23)
x* = 85 + R x"d,,. (24)

5.2. A quantum group with nine generators

Once the matrixk has been explicitly computed, it is possible to introduce a new quantum
matrix + with nine elements satisfying the relatioRs deduced from (9)

DIk 1 LT plk
Rkl tm tn - tl tk Rmn' (25)
The computation of the inverse? yields
1263 — ut2e3 —ut3t + utiit3 1312 — utde?
—2.,2.3 -3,2.3 1.3 -1,1.3 —2.,1.2 —-3,1.2 -1
—uTTty AUy ity —uT gty —uT ot u Tt d (26)
2.3 —-2,2.3 2,1,3 1.3 1,2 —2,1,2
1515 — u"tsty —uctit; + 158 tts — u"tyt;
with the determinant/ of ¢ equal to
d = 1313 + 131263 + w3136 — w1303 — u ot — u i,



2026 J Bertrand and M Irac-Astaud

It can be verified thad is not a central element @ (¢) and therefore must be added to this
algebra. The commutation relatio®s,-+ of 4= with the generators;;f are

tdt=d ' tyd ' =u"%d ') tzd b =u3d'e3
t2d~t = d 2 2d7t = utd~? t2d™t = u3d 12
B2d7t = udd™3 3dt =u3d7 3d7r = d 3. (27)

In this mannerHyg = C(t,d"*)/R,; U R,; is endowed with a structure of Hopf algebra.

Thus two Hopf algebrasig and H,o, have been constructed. Both preserve the same
differential calculus on the deformed oscillator algebra definedRby with ¢ = u?. In
addition, the construction ensures thft, containsHg = C(T, D™Y)/Ry7 U Ryp1 as a
Hopf subalgebra.

6. Conclusion

We have been able to deform simultaneously the Weyl-Heisenberg algebra and its group
of invariance (a subgroup offL(3)). In addition, an invariant differential calculus has
been set up on the resulting quantum space. However, it must be stressed that the whole
construction cannot be carried out for arbitrary values of the deformation parameters and
that the final result depends only on one complex numaber

The constraint on the values of the parameters can be removed when the requirement
of invariance by a seven-generator quantum group is lifted. A purely algebraic approach
[4] can be developed and the commutation relations are then shown to be invariant by a
guantum matrix belonging to a three-parameter deformatiof of3) [8, 9].

The construction performed in this paper has yielded two quantum groups and their
associated Hopf algebrd# g, Hg, which have ten and eight generators, respectively. These
algebras are original deformations Gt (3) and of its subgrous;. They are different from
GL,(3) and other quantum groups proposed in [5] since they correspond to the conservation
of different quadratic forms. Moreover, the smaller aHg is embedded irHo as a true
Hopf subalgebra.
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